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Abstract. Lattice Green functions appear in lattice gauge theories, in lattice models of statistical
physics and in random walks. Here, space coordinates are treated as parameters and series
expansions in the mass are obtained. The singular points in arbitrary dimensions are found. For
odd dimensions these are branch points with half odd-integer exponents, while for even dimensions
they are of the logarithmic type. The differential equations for one, two and three dimensions are
derived, and the general form for arbitrary dimensions is indicated. Explicit series expressions are
found in one and two dimensions. These series are hypergeometric functions. In three and higher
dimensions the series are more complicated. Finally an algorithmic method by Vohwinkel, Lüscher
and Weisz is shown to generalize to arbitrary anisotropies and mass.

1. Introduction

Green functions, also known as two-point functions or propagators, are ubiquitous in physics.
They appear in classical field theories, quantum mechanics and quantum field theories to name
but a few areas. When a discrete space–time approach is used as a regulator, the continuum
Green functions become lattice functions. In the problems of condensed matter physics, both
the continuum and lattice approach are natural. Random walks on a lattice provide another
field of application for Green functions, where they are generating functions for the return
probability of a random walker on a lattice [1]. Given an isotropic random walk occurring in
steps of one unit on a hypercubic lattice, one considers the probability of visiting a given site,
or of returning to the starting site, after n steps. This problem was first considered by Pólya [2]
who showed that this probability tends to one only in one and two dimensions, for n tending to
infinity. This is the recurrence/transience transition which is an important result in the study
of random walks.

The free propagator appears naturally in the perturbative expansion of field theories. A
lattice provides a regulator for the infinities in such expansions, and the four-dimensional
discrete Green functions appear naturally [3–5]. The three-dimensional function appears in
the study of effective three-dimensional theories [6]. A lattice regularization has also been
used in [7] to study non-relativistic quantum scattering in two and three space dimensions.
For dimensions greater than one, the continuum free Green function is singular at the origin,
while the lattice version is finite. This provides a regularization of the UV divergences. In yet
another context, the propagator was used to find the resistance of a network of resistors [8].
(See also [9] in relation to conformal invariance.)

Although the integral representation of the lattice Green function for the hypercubic lattice
is well known, the analytic calculation of this integral remains a challenge. A closed form
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appears to exist only in one dimension and for a special case in two dimensions. In higher
dimensions there are several partial results [1, 10]. A rather recent numerical approach was
used in [11] and developed in [12] for the massless free propagator. It was applied to the
two-dimensional case in [13]. Similar position space methods were considered earlier in [14],
and later in [15].

In this paper the free propagator as a function of the mass squared which is allowed to vary
in the whole complex plane is considered. The space coordinates are treated as parameters.
Series expansions are first obtained for large values of the mass. In one and two dimensions
these series are hypergeometric while in higher dimensions they are not. This large mass
expansion follows from the multi-dimensional integral representation of the lattice Green
function. However, this representation does not allow one to find the series expansion around
other values of the mass. To this end recurrence relations and corresponding differential
equations in the mass squared are derived. This approach gives the singularities of the Green
function and allows one to expand around any point. Non-trivial monodromies are found
around the singular points.

The paper is organized as follows. Section 2 introduces the notation and the well known
integral representation for the minimal anisotropic lattice Green function for the simple cubic
lattice in d dimensions. Some general properties are also discussed. The one-dimensional
integral representation in terms of Bessel functions is given. A simple derivation for the
location of the singularity in the complex mass plane is found. A general expansion of the
lattice Green function in the inverse of the mass is obtained, and a recurrence relation between
dimensions for the coefficients of this expansion is noted. In section 3 the one-dimensional case
is studied in detail as a simple illustration of the methods used. This also serves as a guide to
the features common to all dimensions. The same methods are applied to the two-dimensional
Green function and two novel expansions are found (section 4). The recurrence relation and
the differential equation are then obtained for the three-dimensional case (section 5). Section 6
concludes with general remarks for four and higher dimensions. Appendix A contains a set of
formulae used in the text. In appendix B, the method of [12] is extended to arbitrary mass and
anisotropies.

2. General results

Consider the hypercubic lattice in d dimensions, with unit vectors êj , j = 1, . . . , d. The
discrete anisotropic Green equation is

Hf (�x) ≡
d∑

j=1

αj [f (�x + êj ) + f (�x − êj )] = 2βf (�x) + δ�x,�0. (1)

The integers xj label the lattice sites, and the anisotropies αj are arbitrary but non-vanishing
complex numbers. When the αj s are omitted, they should be assumed to be all equal to 1.
The action of the discrete anisotropic d-dimensional Laplace operator � on f is given by
(H − 2

∑d
j=1 αj )f (�x). Here the contribution of the latter term has been absorbed in β which

is, depending on the context, the mass squared, the energy eigenvalue or a formal expansion
parameter for a generating function. This definition of β gives a natural parity symmetry (6),
and renders the sets of singularities symmetric with respect to the origin. The free massless
scalar propagator of lattice gauge theories corresponds to the isotropic case, αj = 1 for all j ,
and β = d . A completely isotropic solution of the isotropic equation satisfies

2df (êj ) = 2βf (�0) + 1 j = 1, . . . , d. (2)
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Adding to a solution of (1) any solution of the homogeneous equation

d∑
j=1

αj [f (�x + êj ) + f (�x − êj )] = 2βf (�x) (3)

yields another Green function. A large class of such solutions can be written as

h(�x|�α, β) =
∫ +π

−π

· · ·
∫ +π

−π

dd �q
(2π)d

exp(i�q · �x)h̃(�q)δ
( d∑

j=1

αj cos qj − β

)
(4)

where the function h̃ is arbitrary but well behaved.
One can define a decoupling point at β = 0, for which equation (1) becomes an equation

for two sub-lattices: a lattice where
∑d

j=1 xj is even and one where
∑d

j=1 xj is odd.
The minimal solution of (1) is given by

G
(d)
± (�x|�α, β) =

∫ +π

−π

· · ·
∫ +π

−π

dd �q
(2π)d

exp(i�q · �x)
2
∑d

j=1 αj cos qj − 2β ± iε
(5)

where ε → 0+. The ε prescription removes integration ambiguities at the poles.
When only d ′ anisotropy parameters are equal to each other, the solution (5) is invariant

under the 2d ·d ′! parity transformations and permutations of the xj s. For d ′ = d, the symmetry
is that of the d-dimensional hypercubic group, and the functionsG(d)

± are completely symmetric
in the absolute values of their arguments xj . There is also a parity symmetry relating β to −β:

G
(d)
± (�x|�α,−β) = eiπ(1+X)G

(d)
∓ (�x|�α, β) (6)

where X ≡ ∑d
j=1 |xj |, and a complex conjugation symmetry

(G
(d)
± (�x|�α, β))∗ = G

(d)
∓ (�x|�α∗, β∗). (7)

The latter symmetry shows that the two Green functions are complex conjugates of each other.
The exponentiation formula

n!

An+1
=
∫ ∞

0
dt tn exp(−tA) Re (A) > 0 n = 0, 1, 2, . . . (8)

and the integral representations (74) for the Bessel functions yield a one-dimensional integral
representation for (5)

G
(d)
± (�x|�α, β) = − (±i)1+X

2

∫ +∞

0
dt exp

(
− tε

2
∓ itβ

)
J|x1|(α1t), . . . , J|xd |(αdt). (9)

In this expression ε can be set to zero. For αj ∈ R, the integrals converge in the domains
∓Im β � 0, without a finite number of real points. Note that (9) satisfies (1) by virtue of
properties (78)–(81).

To find the singularities ofG(d)
± in β, we consider first the initial integral representation (5).

For |β| >∑
j |αj |, the integrand is a continuous function, without singularities, integrated over

a compact domain. Thus, the Green function has no singularities for these values of β. This
includes the point at infinity. Now we consider, for simplicity, the case without anisotropies
(αj = 1). Equation (5) implies that the possible singularities are real. When d = 1, the
integral (9) converges provided the oscillating cosine of the asymptotic expansion (76) is not
‘cancelled’ by exp(∓itβ). For β = ±1, and only for these values, the integral has a diverging
contribution of the form

∫∞ dt/
√
t , which results in the branch points β = ±1. This is

confirmed by the explicit expressions given in section 3. The same reasoning holds for d = 2.
The product of the two cosines yields one divergent contribution,

∫
dt/t for three values of β:
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0 and ±2. This is confirmed in section 4. For β = 0, note that this approach also predicts a
lack of divergence for points on the odd sub-lattice. One has β ln β, which vanishes as β tends
to 0. For d � 3, there are enough powers of

√
t to give a converging integral at all β. This

corresponds to the recurrence/transience transition in the context of random walks. Let [n]
denote the integer part of n. Taking [(d − 1)/2] β-derivatives of (9), and using the asymptotic
expansion for the Bessel function, yields d + 1 singularities: β0 = −d,−d + 2, . . . , d − 2, d .
For d � 1 and odd, they are of the branch point type (β − β0)

p− 1
2 , where p is a non-negative

integer. For d � 2 and even, the singularities are logarithmic of the type (β−β0)
p′

lnq
′
(β−β0),

where p′ is a non-negative integer and q ′ a positive integer. A slightly more complicated but
essentially similar analysis applies for arbitrary anisotropies. The location of the singularities
will depend explicitly on the αj s. These results can be made rigorous through the use of a
Tauberian theorem.

The ε prescription becomes a convergence factor when one uses the series expansions (75)
of the Bessel functions. This gives

G
(d)
± (�x|�α, β) = − 1

2β1+X

∞∑
n=0

c
(d)
X+2n(�x|�α)β−2n (10)

where

c(d)n (�x|�α) ≡
∫ +π

−π

· · ·
∫ +π

−π

dd �q
(2π)d

exp(i�q · �x)
( d∑

j=1

αj cos qj

)n
(11)

and

c(d)n (�x|�α) = 0 n = 0, . . . , X − 1 (12)

c
(d)
X+2n(�x|�α) = (X + 2n)!

d∏
j=1

(αj
2

)|xj | ∑
k1�0

· · ·
∑
kd�0

d∏
j=1

(αj
2

)2kj

× δk1+···+kd ,n
k1! . . . kd !(|x1| + k1)! . . . (|xd | + kd)!

n � 0. (13)

In particular one finds

G
(d)
± (�x|�α, β) ∼ − X!

∏d
j=1 α

|xj |
j

|x1|! . . . |xd |!(2β)1+X
β → ∞ (14)

which shows the Green function to vanish faster than the simple estimate 1/(2β) obtained
from the integral representation (5). A more compact form of the coefficients (13) can be
obtained by the pairwise replacement of Bessel functions through identity (82). This is done
for d = 2, 3, 4 in the following sections.

The result (10) does not depend on the sign of the ε prescription. This is easily understood
by noticing that for |β| >∑d

j=1 |αj | the denominator in (5) does not have poles and therefore ε
can be set to zero. The large β expansion then yields (10) with the cn coefficients given by (11).
One can also conclude that the expansion (10)–(13) converges at least for |β| > ∑d

j=1 |αj |.
Convergence at the generalized massless point (β = ∑d

j=1 |αj |) depends on the dimensionality
of the lattice. This is related to the recurrence/transience of the random walk. In one and two
dimensions the series diverge at this point, despite the ε prescription. In higher dimensions
the series converge.

The random walk interpretation of the cns is the following. For a random walker starting
from the origin, let Pn(�x) be the probability of visiting the site �x after n unit steps on the
d-dimensional hypercubic lattice. We take the anisotropies to be positive and such that∑d

j=1 αj = d . The probability of jumping from �x to �x + êj or to �x − êj is αj
2d . One then
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has Pn(�x) = 1
dn
c(d)n (�x|�α). The vanishing of cn for n < X is therefore natural since X is the

minimal number of steps required to reach point �x.
General relations between the coefficients cn for different dimensions can be simply found.

Let d ′ be any positive integer smaller than d. Expanding
∑d

j=1 αj cos qj using the binomial
formula readily yields

c(d)n (�x|�α) =
n∑

k=0

(
n

k

)
c
(d ′)
k (x1, . . . , xd ′ |α1, . . . , αd ′)c

(d−d ′)
n−k (xd ′+1, . . . , xd |αd ′+1, . . . , αd).

(15)

Note that these relations are valid for arbitrary anisotropies. One can also get other equations
by expanding with the multinomial formulae.

3. The one-dimensional Green function

In one dimension it is possible to obtain closed form expressions, and corresponding series
expansions. The anisotropy parameter α1 is set to one as it is an irrelevant overall factor.

The closed forms are obtained by integration in the complex q-plane. The integration
contour is the rectangular path ]−π + i∞,−π ]∪ [−π, π ]∪ [π, π + i∞[∪]π + i∞,−π + i∞[,
for the upper half-plane, and its reflection about the real axis for the lower half-plane. The part
at infinity gives a vanishing contribution, while the two side contributions cancel each other
because x ≡ x1 is an integer. One finds

G
(1)
± (x|β) = ± e±ik|x|

2i sin k
β = cos k k ∈ ]0, π [. (16)

One can compare (16) to its continuum counterpart

g
(1)
± (x|k) =

∫ ∞

−∞

dq

2π

exp(iqx)

k2 − q2 ± iε
= ±e±ik|x|

2ik
. (17)

One also finds

G(1)
+ (x|β) = G

(1)
− (x|β) =




+
eik|x|

2i sin k
k1 ∈ [0, π ] k2 > 0

− e−ik|x|

2i sin k
k1 ∈ ]0, π [ k2 < 0

(18)

where β = cos(k1 + ik2) and k = k1 + ik2. Note that the positive exponential e+k2 |x|
2 sinh k2

(k2 > 0),
despite satisfying equation (1), is not obtained. This was to be expected from the integral
representation (5), since for |β| > 1 the integrand has no singular point and the integral must
vanish as |x| → ∞.

The general expression (10)–(13) reduces to

G
(1)
± (x|β) = − 1

(2β)|x|+1

∞∑
k=0

(|x| + 2k)!

k!(|x| + k)!
(2β)−2k

= − 1

(2β)|x|+1 2F1

( |x|
2

+
1

2
,
|x|
2

+ 1; |x| + 1;β−2

)
. (19)

This series converges uniformly for |β| > 1 and simply for |β| = 1, β �= ±1; it diverges
at β = ±1 and for |β| < 1. The equality of the right-hand sides of (18) and (19) was
previously known [16]. The recurrence relation for the coefficients of the Green function, with
cn ≡ c(1)n (x|1), reads

(n2 − x2)cn − n(n − 1)cn−2 = 0. (20)
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The functionG(1)
± satisfies a second-order differential equation in β, of the hypergeometric

type:

(β2 − 1)y ′′ + 3βy ′ + (1 − x2)y = 0. (21)

The indices at the three regular singular points β = ±1 and ∞ are (− 1
2 , 0) and (1−|x|, 1+|x|),

respectively. The two branch points β = ±1 imply the existence of monodromies in the
complex-mass plane. Solution (19) corresponds to (β = ∞; s = 1 + |x|). It is then natural to
investigate the properties of the solution corresponding to (β = ∞; s = 1 − |x|)
y1(β) = 2|x|−2β |x|−1

2F1

(
1 − |x|

2
, 1 − |x|

2
; 1 − |x|;β−2

)
x �= 0 (22)

yl1(β) = 1

4β
· 1√

1 − β−2
ln

(
1

β

)
+

1

4

∞∑
n=0

β−(2n+1) d

ds

(
%(n + s

2 )%(
s+1

2 )

%(n + s+1
2 )%( s2 )

)
|s=1

(23)

with 2F1(0, 1
2 ; 0, β−2) ≡ 1. The derivative of the coefficients in (23) can be written using

the function ψ(z) = d
dz ln%(z). The appearance of the logarithm for this second solution is

due to the degeneracy of the indices at x = 0. The hypergeometric series (22) truncates to
polynomials in β+1. Note that this solution almost provides a Green function. The a priori
arbitrary normalization of a solution was chosen to be equal to 2|x|−2 in (22) so that the one-
dimensional Green equation, f (x + 1|β) + f (x − 1|β) − 2βf (x|β) = δx,0, is satisfied by
f (x|β) given in (22) and f (0|β) set to 0.

The expansion around β = 1 can be carried out similarly. The two solutions are

y0(β) = 2F1

(
1 − |x|, 1 + |x|; 3

2
; 1 − β

2

)
(24)

=
sin

(
2|x|Arcsin

(√
1−β

2

))
|x|
√

1 − β2
for β ∈] − 1, 1] (25)

y1/2(β) = 1√
β − 1

2F1

(
1

2
− |x|, 1

2
+ |x|; 1

2
; 1 − β

2

)
(26)

= −i

√
2 cos

(
2|x|Arcsin

(√
1−β

2

))
√

1 − β2
for β ∈] − 1, 1[. (27)

These solutions are valid for all values of x. In (27) the choice
√−1 = i was made. The

solution y0 is regular at β = 1 and is a solution to the Green equation when appropriately
normalized, while y1/2 is singular at β = 1, and is a solution to the homogeneous equation (3).
Linear combinations of these solutions provide the two analytic continuations to the function
defined by (19):

1

2
√

2
(
√

2|x|y0 ± y1/2) = ± 1

2i sin k
e±ik|x| β = cos k k ∈]0, π [. (28)

Moreover one finds

β |x|−1
2F1

(
1 − |x|

2
, 1 − |x|

2
; 1 − |x|;β−2

)

= 21−|x||x| 2F1

(
1 − |x|, 1 + |x|; 3

2
; 1 − β

2

)
|x| � 1. (29)

This corresponds to the polynomial solutions (22) and (24), which have to match since, as
polynomials, they are defined on the whole complex β-plane. (An amusing byproduct of the
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foregoing analysis is the identity 1 = ∑∞
n=1

(2n+1)!
23n(2n−1)(n!)2 ·) The expansion around β = −1

yields similar results as can be expected from parity. This symmetry is not explicit on the
series representations because the expansion point is not β = 0.

The limits β → ±1 for the Green function do not exist. However, the following well-
defined limit

G(1)(x) ≡ 1
2 lim
β→1−

(G(1)
+ (x|β) + G

(1)
− (x|β)) = 1

2 |x| (30)

is also a solution to the Green equation. In fact the latter equation is, for any β, a one-
dimensional recurrence relation which can be solved directly by the standard method. The
points β = ±1 are degeneracy points and the direct solution in this case is f (x) =
(±1)x(f (0) ± 1

2 |x|), for β = ±1, and f (0) arbitrary. For β = 1, and with the choice
f (0) = 0, one recovers (30).

4. The two-dimensional Green function

For arbitrary anisotropies, the identity (82) for the product of two Bessel functions can be used
to obtain the following series expansion for the Green function:

G
(2)
± (�x|�α, β) = − 1

|x2|!2βX+1
·
(α1

2

)|x1| (α2

2

)|x2|

×
∞∑
k=0

(X + 2k)!

k!(|x1| + k)!
2F1

(
−k,−|x1| − k; |x2| + 1;

(
α2

α1

)2
)

·
(
α1

2β

)2k

. (31)

When α1 = α2, these anisotropies can be set to 1 and the preceding expression becomes

G
(2)
± (�x|β) = − 1

(2β)X+1

∞∑
k=0

(X + k + 1)k(X + 2k)!

k!(|x1| + k)!(|x2| + k)!
(2β)−2k (32)

= − X!

(2β)X+1|x1|!|x2|!
× 4F3

(
X + 1

2
,
X + 1

2
,
X

2
+ 1,

X

2
+ 1;X + 1, |x1| + 1, |x2| + 1; 4β−2

)
. (33)

The series (32) converges uniformly for |β| > 2, simply for |β| = 2 and β �= ±2 and diverges
at β = ±2 and |β| < 2.

The recurrence relation for the coefficients of the Green function read

(n2 − X2)(n2 − x2)cn − 4n2(n − 1)2cn−2 = 0 (34)

where x ≡ |x1| − |x2|. The Green function G
(2)
± satisfies a fourth-order differential equation

in β:

β2(β2 − 4)y ′′′′ + β(10β2 − 16)y ′′′ + (β2(−2(x2
1 + x2

2 ) + 25) − 8)y ′′

+3β(−2(x2
1 + x2

2 ) + 5)y ′ + (1 − X2)(1 − x2)y = 0. (35)

The four regular singular points and their indices are

β = 0: s = 1, 1, 0, 0

β = ±2: s = 2, 1, 0, 0

β = ∞: s = 1 + X, 1 − X, 1 + x, 1 − x.

The three finite singular points were predicted in section 2. The series (32) is the regular
solution corresponding to (β = ∞; s = 1 + X). The degeneracy of the indices at the other
points signals the existence of logarithmic solutions.
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The radius of convergence of the series expansion around β = 0 is equal to 2, as β = ±2
are the closest singularities. Thus, this expansion and the expansion around infinity cover the
whole complex β-plane. The recurrence relation for the coefficients of the series expansions
around β = 0 contains two terms, just like (34) for the expansion around infinity. This permits
the explicit determination of the series. One also has to find the connection coefficients involved
in the linear combinations of the four solutions which reproduce the Green functions at hand,
or the analytic continuations of (32). In the previous section, in (28), one had |x|

2 and ± 1
2
√

2
.

But the determination of the appropriate functions of �x is not an easy task and there is no
general systematic method which gives a closed form result. Here it is possible to carry out
this analysis completely, and the following expansions and connection coefficients have been
found:

G
(2)
± (�x|β) = [f0(�x) ± l0(�x)]y0(β) + [f1(�x) ± l1(�x)]y1(β) ± h0(�x)yl0(β) ± h1(�x)yl1(β) (36)

where

y0(β) = 4F3

(
1 + X

2
,

1 − X

2
,

1 + x

2
,

1 − x

2
; 1,

1

2
,

1

2
; β

2

4

)
(37)

y1(β) = β 4F3

(
2 + X

2
,

2 − X

2
,

2 + x

2
,

2 − x

2
; 3

2
,

3

2
, 1; β

2

4

)
(38)

yl0(β) = y0(β) ln β +
d

ds
5F4

(
s + 1 + X

2
,
s + 1 − X

2
,
s + 1 + x

2
,
s + 1 − x

2
, 1;

s + 2

2
,
s + 2

2
,
s + 1

2
,
s + 1

2
; β

2

4

)
|s=0

(39)

yl1(β) = y1(β) ln β + β
d

ds
5F4

(
s + 1 + X

2
,
s + 1 − X

2
,
s + 1 + x

2
,
s + 1 − x

2
, 1;

s + 2

2
,
s + 2

2
,
s + 1

2
,
s + 1

2
; β

2

4

)
|s=1

(40)

are the four independent solutions of the differential equation around β = 0. The s-derivatives
can be easily expressed in terms of ψ(z), the logarithmic derivative of the Gamma function.
The logarithms are taken real for positive β. The six connection functions are given by

f0(�x) = 1

4
cos

(π
2
X
)

cos
(π

2
x
)

+
1

4
sin
(π

2
X
)

sin
(π

2
|x|
)

(41)

f1(�x) = 1
2 |x2

1 − x2
2 |f0(�x) = 1

2 |x|Xf0(�x) (42)

h0(�x) = h0 cos
(π

2
X
)

cos
(π

2
x
)

(43)

h1(�x) = h0

2
|x2

1 − x2
2 | sin

(π
2
X
)

sin
(π

2
|x|
)

= h0

2
x X sin

(π
2
X
)

sin
(π

2
x
)

(44)

l0(�x) =
(
ψ

(
X + 1

2

)
+ ψ

( |x| + 1

2

))
h0(�x) (45)

l1(�x) =
(
ψ

(
X

2
+ 1

)
+ ψ

( |x|
2

+ 1

)
− 2

)
h1(�x) − h0

2
(|x| + X) sin

(π
2
X
)

sin
(π

2
|x|
)

(46)

where h0 = i
2π · These functions satisfy a number of equations of which the simplest are

Hf0(�x) = δ�x,�0 Hh0(�x) = 0 Hl0(�x) = 0 (47)

Hf1(�x) = 2f0(�x) Hh1(�x) = 2h0(�x) Hl1(�x) = 2l0(�x) (48)

x1[f0(x1 + 1, x2) − f0(x1 − 1, x2)] = x2[f0(x1, x2 + 1) − f0(x1, x2 − 1)]. (49)
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Thus f0 is a Green function at the decoupling point while h0 and l0 are solutions of the
homogeneous equation at the same point. The functions f1, h1 and l1 appear as potentials
for the sources f0, h0 and l0, respectively. The last equation for f0 is a strong form of a
directional-independence relation. The f0 − f1 part in (36) is a solution, regular at β = 0, of
the Green equation. The remaining part is a singular solution of the homogeneous equation,
independent from the value of h0. Finally, h0(�x)y0(β) + h1(�x)y1(β) is a regular solution of
the homogeneous equation.

The parity property is satisfied with ln(−1) = ±iπ and the complex conjugation symmetry
for both β and β∗ not on the branch cut.

We consider now the expansion about β = 2, and let v = β − 2. The index s can take
one of the three values already found: 0, 1 or 2. A generic solution is given by

y(v) =
∑
n�0

an(s)v
n+s (50)

where

16(n + s)2(n + s − 1)(n + s − 2)an
+4(n + s − 1)(n + s − 2)[5n2 + (10s − 9)n + 5 + 5s2 − 9s − 2(x2

1 + x2
2 )]an−1

+2(2n + 2s − 3)(n + s − 2)[2n2 + (4s − 6)n + 5 + 2s2

−6s − 2(x2
1 + x2

2 )]an−2 + (n + s − 2 + X)(n + s − 2 − X)(n + s − 2 + x)

×(n + s − 2 − x)an−3 = 0 (51)

with n � 0 and a<0 ≡ 0. For a0(s) ≡ 1, the solutions

y2(v) =
∑
n�0

an(s = 2)vn+2 (52)

y1(v) =
∑
n�0

an(s = 1)vn+1 a1 ≡ 0 (53)

y0(v) =
∑
n�0

an(s = 0)vn a1 = a2 ≡ 0 (54)

are linearly independent and regular at β = 2. The fourth solution has the expected logarithmic
singularity

yl0(v) = y0(v) ln v +
∑
n�0

vn
d

ds
an(s)|s=0. (55)

The complete Green function is a priori a linear combination of the four solutions. The
corresponding connection coefficients have not been investigated. However, one can conclude
that the logarithmic solution corresponds to a solution of the homogeneous equation (3), and
can therefore be dropped without altering the Green property. The remaining piece is the
natural regularization at β = 2 of the Green function defined by (5). The situation at β = −2
is similar.

For x1 = x2 and arbitrary anisotropies, Montroll found an expression in terms of Legendre
functions [17]. In terms of the definitions adopted here one has

G
(2)
M ((x1, x1)|(α1, α2), β) = − 1

2π(α1α2)
1
2

Q|x1|− 1
2

(
β2 − (α2

1 + α2
2)

2α1α2

)
(56)

whereQν(z) is the νth Legendre function of the second kind. These functions have logarithmic
singularities at z = ±1. But for ν a half odd-integer, only z = 1 is a singularity:

Q|x1|− 1
2
(1 − ε) ∼ −1

2
ln
(ε

2

)
− γ − ψ

(
|x1| +

1

2

)
+ O(ε) ε → 0+ (57)
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where γ = 0.577 216 . . . . Thus, one finds a logarithmic divergence at β = ±2:

G
(2)
M ((x1, x1)|(1, 1), β) = 1

4π
ln

(
4 − β2

4

)
+

γ

2π
+

1

2π
ψ

(
|x1| +

1

2

)

+O

(
β2 − 4

2

)
β → 2− or β → −2+. (58)

One also has G(2)
M ((x1, x1)|(1, 1), 0) = − 1

4 .
Montroll’s result should be qualified. It is general in terms of anisotropies, but partial as it

applies only to the line x1 = x2 and |β| < 2. Also, it is only a part of the full Green function,
even under these restrictions. Consider x1 = x2 in the Green function given by (36). At β = 0
this expression diverges, as expected, from the analysis of section 2, and thus contradicts (56).
However, taking the half-sum of the two Green functions one finds

G(2)(�x|β) = 1
2 (G

(2)
+ (�x|β) + G

(2)
− (�x|β)) = f0(�x)y0(β) + f1(�x)y1(β). (59)

This solution of the Green equation is regular at β = 0, and

G(2)((x1, x1)|β) = 1

4
cos(πx1) 2F1

(
1

2
+ |x1|, 1

2
− |x1|; 1; β

2

4

)
. (60)

For x1 = 0, one has the following identity:

2F1

(
1

2
,

1

2
; 1; β

2

4

)
= 2

π
K

(
β2

4

)
(61)

where K is the complete elliptic function of the first kind [18]. One also has

Q|x1|− 1
2

(
β2 − 2

2

)
= π

2
cos(πx1) 2F1

(
1

2
+ |x1|, 1

2
− |x1|; 1; β

2

4

)
|β| < 2 (62)

which shows that G(2)((x1, x1)|β) and G
(2)
M ((x1, x1)|(1, 1), β) are equal, up to a factor of −1.

The origin of this sign in (56) is unclear. We now compare (56) to the half-sum of the two
functions (32) at x1 = x2. The former function is even in β while the latter is odd. Therefore,
they cannot be equal, and (56) holds only for |β| < 2.

5. The three-dimensional Green function

Using the identity (82) for the product of two Bessel functions one obtains the following series
expansion for the three-dimensional function:

G
(3)
± (�x|�α, β) = − 1

|x2|!2βX+1
·
(α1

2

)|x1| (α2

2

)|x2| (α3

2

)|x3|

×
∞∑
k=0

(X + 2k)!

(
α3

2β

)2k k∑
p=0

1

p!(k − p)!(|x1| + p)!(|x3| + k − p)!

×
(
α1

α3

)2p

2F1

(
−p,−|x1| − p; |x2| + 1;

(
α2

α1

)2
)
. (63)

When the anisotropies αj are equal to 1 the preceding expression simplifies to

G
(3)
± (�x|β) = − 1

(2β)X+1

∞∑
k=0

(X + 2k)!

(2β)2k

×
k∑

p=0

(|x1| + |x2| + p + 1)p
p!(k − p)!(|x1| + p)!(|x2| + p)!(|x3| + k − p)!

. (64)
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The series (64) converges for |β| � 3. For �x = �0 one can write

G
(3)
± (�0|β) = − 1

2β

∞∑
k=0

(2k)!

4k(k!)2
ukβ

−2k (65)

uk =
k∑

p=0

(
k

p

)2(2p

p

)
. (66)

The value of this series at β = 3 was calculated by Watson [19]:

G
(3)
± (�0|3) = − 2

π2
[18 + 12

√
2 − 10

√
3 − 7

√
6]K2((2 −

√
3)2(

√
3 −

√
2)2). (67)

The numerical value of (67) is −0.2527 . . . . (The definition of [18] is adopted for the function
K .) At the singular point β = 3, this series converges, rather slowly, to the known value (67).
The sum of the first 1001 terms gives −0.2502 . . . . It is amusing to note that the uk (k � 1)
appear to be divisible by 3, the number of dimensions.

It is possible to derive a recurrence relation for the coefficients of the three-dimensional
Green function. We define the following even homogeneous polynomials:

/222 = x2
1x

2
2x

2
3

/422 = x2
1x

2
2x

2
3 (x

2
1 + x2

2 + x2
3 )

/2i = x2i
1 + x2i

2 + x2i
3 i = 1, 2, 3, 4

/(2i)(2i) = x2i
1 x2i

2 + x2i
2 x2i

3 + x2i
1 x2i

3 i = 1, 2

/(2i)2 = x2i
1 x2

2 + x2
1x

2i
2 + x2i

2 x2
3 + x2

2x
2i
3 + x2i

1 x2
3 + x2

1x
2i
3 i = 2, 3.

For cn ≡ c(3)n (�x|(1, 1, 1)), it has been found that

(n − 2)(n − 4)[/8 − 4/62 + 6/44 + 4/422

−4n2(/6 − /42 + 10/222) + 2n4(3/4 + 2/22) − 4n6/2 + n8]cn
+4n(n − 1)2(n − 4)[−/6 + /42

+6/222 − (n2 − 4n − 2)/4 − 2(3n2 − 4n + 2)/22

+n(n − 2)(5n2 − 6n + 8)/2 − n(n − 2)(n2 + 2)(3n2 − 6n + 4)]cn−2

+2n(n − 1)(n − 2)(n − 3)[−(n2 − 4n + 12)/4 + 2(5n2 − 20n + 12)/22

−2n(n − 4)(7n2 − 24n + 28)/2

+n(n − 4)(15n4 − 96n3 + 268n2 − 384n + 248)]cn−4

+4n2(n − 1)(n − 2)(n − 3)(n − 4)(n − 5)

×[3(n − 3)/2 − (7n3 − 57n2 + 158n − 162)]cn−6

+9n2(n − 1)(n − 2)2(n − 3)(n − 4)(n − 5)(n − 6)(n − 7)cn−8 = 0. (68)

This translates into a tenth-order differential equation for y = G
(3)
± :

β2(β2 − 1)3(β2 − 9)y(10) + β(β2 − 1)2(61β4 − 418β2 + 45)y(9)

−(β2 − 1)[β6(4/2 − 1433)

+β4(−16/2 + 7511) + β2(12/2 − 2673) + 27]y(8)

−4β[β6(42/2 − 4167) + β4(−146/2 + 17 284)

+β2(122/2 − 11 683) − 18/2 + 1140]y(7)

+[β6(6/4 + 4/22 − 2552/2 + 102 963)

+β4(−4/4 − 24/22 + 5740/2 − 261 972)
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+β2(−2/4 + 20/22 − 2444/2 + 90 750) + 48/2 − 1536]y(6)

−β[β4(−162/4 − 108/22 + 17 640/2 − 337 617)

+β2(76/4 + 392/22 − 23 180/2 + 470 364) + 14/4 − 140/22

+3812/2 − 64 194]y(5)

−2[β4(2/6 − 2/42 + 20/222 − 714/4 − 476/22 + 28 742/2 − 278 744)

+β2(2/6 − 2/42 − 12/222 + 202/4 + 892/22

−18 870/2 + 179 166) + 17/4 − 74/22 + 590/2 − 5055]y(4)

−4β[β2(16/6 − 16/42 + 160/222 − 1230/4 − 820/22 + 20 776/2

−103 135)+8/6−8/42−48/222 + 150/4 + 612/22 − 5190/2 + 23 02]2y(3)

+[β2(/8 − 4/62 + 6/44 + 4/422 − 276/6 + 276/42 − 2760/222

+6246/4 + 4164/22 − 44 916/2 + 108 681)

−40/6 + 40/42 + 240/222 − 120/4 − 720/22 + 2280/2 − 4680]y(2)

+9β[/8 − 4/62 + 6/44 + 4/422 − 36/6

+36/42 − 360/222 + 246/4 + 164/22 − 676/2 + 681]y(1)

+15[/8 − 4/62 + 6/44 + 4/422

−4/6 + 4/42 − 40/222 + 6/4 + 4/22 − 4/2 + 1]y = 0. (69)

This equation has six regular singular points, 0, ±1, ±3 and ∞. The corresponding indices
are

β = 0: s = 7, 7, 6, 5, 5, 4, 3, 2, 1, 0

β = ±1: s = 6, 5, 4, 3, 2, 1, 0, 5
2 ,

3
2 ,

1
2

β = ±3: s = 8, 7, 6, 5, 4, 3, 2, 1, 0, 1
2

β = ∞: s = 5, 3, 1 + |x1| + |x2| + |x3|, 1 − |x1| − |x2| − |x3|,
1 + |x1| + |x2| − |x3|, 1 + |x1| − |x2| + |x3|, 1 − |x1| + |x2| + |x3|,
1 + |x1| − |x2| − |x3|, 1 − |x1| − |x2| + |x3|, 1 − |x1| + |x2| − |x3|.

The Green function is regular at β = ∞ and corresponds to the index 1 + |x1| + |x2| + |x3|.
The appearance of indices differing by integer values can result in logarithms. However, the
ten-term recurrence for the series expansion around β = ±3 shows that all ten solutions do
not contain logarithms. The same conclusion holds at β = ±1, with an eight-term recurrence.
Therefore β = ±1 and β = ±3 are branch point singularities which are free of logarithms.
At β = 0 the indices indicate that some solutions contain logarithms. For the foregoing
Green function β = 0 is a regular point, and one should consider a linear combination of the
logarithm-free solutions.

The reason for the appearance of β = 0 as a singularity of the differential equation is
unclear. Perhaps the fact that this point is a fixed point of the parity symmetry, or its status as
a decoupling point may be relevant here.

At its four singular points, the Green function does not diverge as all the indices are non-
negative; only the solutions which correspond to the vanishing indices give non-vanishing
contributions. However, around a given singular point, one can still consider a natural
regularization by dropping all the solutions in the corresponding linear combination which
are associated with non-integer indices. Such solutions combine into a solution of the
homogeneous equation (3). Finally note that some results were obtained by Joyce [20], at
�x = �0 and around β = 3.
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6. Concluding remarks

Using equation (82) twice gives the large β series expansion of the four-dimensional Green
function

G
(4)
± (�x|�α, β) = −

∏4
j=1(

αj
2 )

|xj |

|x2|!|x4|! · 1

2βX+1

∞∑
k=0

(X + 2k)!

(
α3

2β

)2k

×
k∑

p=0

1

p!(k − p)!(|x1| + p)!(|x3| + k − p)!

(
α1

α3

)2p

× 2F1

(
−p,−|x1| − p; |x2| + 1;

(
α2

α1

)2
)

× 2F1

(
−(k − p),−|x3| − (k − p); |x4| + 1;

(
α4

α3

)2
)
. (70)

When the anisotropies are all equal to 1 the preceding expression becomes

G
(4)
± (�x|β) = − 1

(2β)(X+1)

∞∑
k=0

(X + 2k)!

(2β)2k

×
k∑

p=0

(|x1| + |x2| + p + 1)p(|x3| + |x4| + k − p + 1)k−p

p!(k − p)!(|x1| + p)!(|x2| + p)!(|x3| + k − p)!(|x4| + k − p)!
. (71)

The series (71) converges for |β| � 4. For �x = �0 one can write

G
(4)
± (�0|β) = − 1

2β

∞∑
k=0

(2k)!

4k(k!)2
vkβ

−2k (72)

vk =
k∑

p=0

(
k

p

)2(2k − 2p

k − p

)(
2p

p

)
. (73)

For β = 4, this series converges to the known value of −0.1549 . . . [12]. The sum of the first
31 terms gives −0.1541 . . . . Similarly to uk in the preceding section, vk (k � 1) also appear
to be divisible by the number of dimensions, here equal to four.

A derivation of the recurrence relation for the coefficients c(4)n (�x) can be done as for
the lower dimensions. The order of the recurrence appears to be larger than seven. From this
recurrence a differential equation can be derived. The five singular points are of the logarithmic
type. The logarithmic solutions, at one given singular point, can be dropped leaving a regular
Green function.

These features were seen to be common to the lowest dimensions. They also hold for all the
higher dimensions. The coefficients c(d)n (�x) satisfy recurrence relations for all dimensions. The
general form of these relations is easily inferred from the results for the lower dimensions. The
coefficients appearing in the recurrence relations are polynomials in n and the x2

j . From such
relations one can then derive the differential equation as was done for the lowest dimensions.
Another common feature is the possibility of dropping the singular part, around one given
singularity. This part is a solution of the homogeneous equation. Finally, at β = d, subtracting
G

(d)
± (�0|d) from (5) provides another regularization (see [13] for d = 2).

Determining the explicit recurrence relation and the differential equation is however not
a trivial task. It is also difficult to find the �x-dependent coefficients appearing in the linear
combination of the solutions around a given singularity. These techniques were applied for
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the lower dimensions and new results were obtained. While the low dimensions studied in this
paper seem to be at the limit of tractability of these methods, the knowledge obtained about
the analytic structure of the lattice Green functions in all dimensions is an important step in
their study.
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Appendix A. Bessel functions and other formulae

The cylindrical Bessel functions Jn(z) have both integral representations

Jn(z) = i−n

π

∫ π

0
dq exp(iz cos q) cos(nq) ∀n ∈ Z (74)

and series expansions

Jn(z) =
( z

2

)n ∞∑
k=0

(−1)k

k!%(n + k + 1)

( z
2

)2k
(75)

with an infinite radius of convergence. The asymptotic behaviour at infinity is given by

Jn(z) ∼
√

2

πz

(
cosχ − 4n2 − 1

8z
sin χ

)
|z| → ∞ |arg(z)| < π (76)

where χ = z − π
2 n − π

4 . One also has∫ ∞

0
Jn(x) dx = 1 n � 0. (77)

The Bessel functions have the following properties:

Jn(−z) = (−1)nJn(z) ∀n ∈ Z (78)

J−n(z) = (−1)nJn(z) ∀n ∈ Z (79)

J0(0) = +1 Jn(0) = 0 n �= 0 (80)

Jn−1(z) − Jn+1(z) = 2J ′
n(z) ∀n ∈ Z. (81)

A particular formula for the product of two Bessel functions is

Jm(az)Jn(bz) = ( az2 )
m( bz2 )

n

%(n + 1)

∞∑
k=0

(−1)k 2F1(−k,−m − k; n + 1; b2

a2 )

k!%(m + k + 1)

(az
2

)2k
. (82)

(A typographical error in [21] has been corrected.) Note that 2F1 is in fact a polynomial in
b2/a2. When a = b = 1 this formula simplifies to

Jm(z)Jn(z) =
∞∑
k=0

(−1)k(m + n + k + 1)k
k!%(m + k + 1)%(n + k + 1)

( z
2

)m+n+2k
. (83)
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The generalized hypergeometric series pFq are defined by [16]

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞∑
k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k
· z

k

k!
(84)

where the Pochhammer symbol (a)k is defined by

(a)0 = 1 (a)k = %(a + k)

%(a)
= a(a + 1) · · · (a + k − 1) (85)

and p � q + 1. We define a differential operator δ = z d
dz . The function (84) satisfies the

differential equation

[δ(δ + b1 − 1) · · · (δ + bq − 1) − z(δ + a1) · · · (δ + ap)]y(z) = 0. (86)

For p = q + 1 this equation is Fuchsian with three regular singular points at 0, 1 and ∞.

Appendix B. The WLW approach for arbitrary mass

Starting from an observation of C Vohwinkel, Lüscher and Weisz have developed a powerful
algorithmic method for the numerical calculation of the massless lattice Green function in
four dimensions [12]. Their method applies immediately to any dimension. Here it is shown
that this method generalizes to arbitrary mass and anisotropies. A conserved quantity for the
two-dimensional Green function at the massless and decoupling points is also derived.

An integration by parts of the left-hand side of (87) yields the right-hand side:

αj (G
(d)
± (�x + êj |�α, β) − G

(d)
± (�x − êj |�α, β)) = −xjH(�x|�α) j = 1, . . . , d (87)

H(�x|�α) =
∫ π

−π

· · ·
∫ π

−π

dd �q
(2π)d

exp(i�q.�x) ln

(
2β − 2

d∑
j=1

αj cos qj ∓ iε

)
. (88)

Equation (1) allows one to find another expression for H:

H(�x|�α) = 2∑d
j=1 xj

( d∑
j=1

αjG
(d)
± (�x − êj |�α, β) − βG

(d)
± (�x|�α, β)

)
(89)

provided
∑d

j=1 xj �= 0. This gives the value of G(d)
± (�x + êj |�α, β) in terms of G(d)

± (�x|�α, β)
and G

(d)
± (�x − êk|�α, β). The repeated use of these recurrence relations, coupled with the ±xj

invariance, shows that G(d)
± (�x|�α, β) is a linear combination of the 2d values corresponding to

xj = 0, 1. Note that all the vertices of the unit hypercube are needed when the anisotropies
are arbitrary. These 2d values can be calculated numerically, and the particular ‘±’ branch
obtained, depending on the given value of β in the complex plane. This generalizes the
approach developed in [12].

One can look for additional conserved quantities as was done in [12]. However, this
method depends rather strongly on the dimension. For the isotropic two-dimensional case, we
define

g0(n) = G
(2)
± ((n, 0)|β) g1(n) = G

(2)
± ((n, 1)|β) n � 0. (90)

The Green equation gives

g0(n + 1) + g0(n − 1) + 2g1(n) − 2βg0(n) = 0 n � 1 (91)

and an equation inferred from the above approach is

g1(n + 1) = 2n

n + 1
(βg1(n) − g0(n)) − n − 1

n + 1
g1(n − 1) n � 1. (92)
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One can look for a conserved quantity in the following form:

C(n) = ng0(n) + a1ng1(n) + b0(n − 1)g0(n − 1) + b1(n − 1)g1(n − 1)

+c0g0(n) + c1g1(n) + d0g0(n − 1) + d1g1(n − 1) n � 1. (93)

Using (91) and (92) one finds that C(n) is independent of n provided

b0 = c0 = d0 = −1 a1 = −b1 = 1

β − 1
c1 = d1 = 0 (94)

and β = 0 or 2. This form does not allow for other values of β, but a conserved quantity
at β = −2 can be obtained from the one for β = 2 through the parity symmetry. The new
quantity is a priori conserved for n odd and n even separately. It would be interesting to find
out whether arbitrary values of β accommodate conserved quantities.

Note that β = 0,±2 are the three singular values. Therefore C(n) may not be well
defined. However, using the explicit expression of section 4, and taking the limit β → 0, one
finds that the infinities cancel exactly, leaving C± ≡ C±(n) = ± i

π
for all n � 1. For the

half-sum the conserved quantity is therefore C = 0. The situation at β = 2 is similar. The
conserved quantities can be finite through cancellations, and the divergence corresponds to a
solution of the homogeneous equation and can therefore be dropped. (See also the remark in
the conclusion of [12] concerning this conserved quantity, and [13].)

Note added in proof. Lattice Green functions also arise in the study of the statistical mechanics of the spherical
model [22]. Complex temperature singularities of this system were studied in [23]. Lattice Green functions were
also examined for the cases where factorizations in two complete elliptic integrals occur [24]. I would like to thank
P Butera for bringing to my attention the four works cited in this paper.
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